Consider $S$ the surface of revolution obtained by rotating the planar curve $\alpha(t)=(f(t),0,g(t))$, $t\in I$ which it is contained in the halfplane $y=0, x\geq 0$. We know that $\alpha$ is regular and we have two possible types of curves, i) $\alpha$ is an embedding or ii) $\alpha$ is a simple closed curve. The surface $S$ is $X(I\times{\mathbb R})$, where $$X(t,\theta)=(f(t)\cos\theta,f(t)\sin\theta,g(t)).$$ In order to prove that $S$ is a surface, it appears the problem about how many of parametrizations are needed and how to prove that they are homeomorphisms.
First consider that $\alpha$ is an embedding. We compute the inverse function of $X$ so we will discover what is the right domain of $X$. By the injectivity, it is necessary that $\theta$ moves in an interval of length $2\pi$ at most. Thus a possibility is $X:U_1:=I\times (0,2\pi)\rightarrow X(U_1)$. The set $X(U_1)$ is an open set of $S$ because $$X(U_1)=S-\alpha(I)=S-S\cap(\{y=0,x\geq 0\}).$$ Here we use that $f(t)>0$. Because we need to cover the curve $\alpha(I)$, then the other parametrization is $Y:U_2:=I\times (-\pi,\pi)\rightarrow X(U_2)$. For $Y$ we have to remove `the other side' of $S$, that is $\Phi_\pi(\alpha(I))$, where $\Phi_\theta$ is the rotation of angle $\theta$. In other words, $Y(U_2)=S-(S\cap(\{y=0,x\leq 0\})$.
We compute the inverse of $X$ (or $Y$). We have to write $t$ and $\theta$ in terms of $x,y,z$ from the next equations $$\left\{\begin{array}{l}x=f(t)\cos\theta\\ y=f(t)\sin\theta\\ z=g(t)\end{array}\right.$$ From $x^2+y^2=f(t)^2$, we obtain $f(t)=\sqrt{x^2+y^2}$, and using that $\alpha$ is an embedding, then $t=\alpha^{-1}(\sqrt{x^2+y^2},0,z)$. For $\theta$ we have two possibilities:
- If we want to write `something' with the arc tangent, then it would be $\theta=\mbox{arc tan}(y/x)$. But in such a case, $\theta$ is defined in $(-\pi/2,\pi/2)$. Because the initial interval is $(0,2\pi)$, we have to change the domain of $X$. We write now $X:U_1:=I\times(-\pi/2,\pi/2)\rightarrow X(U_1)$. The only difference is that we have to prove that $X(U_1)$ is an open set of $S$. But by the picture, $X(U_1)=S-(S\cap \{x\leq 0\})$. Other parametrization is with $I\times (\pi/2,3\pi/2)$ where it is possible to define the inverse of the tangent. And what about the points with $\theta=\pi/2$ or $\theta=3\pi/2$? Here, the $x$-coordinate of the point $(x,y,z)\in S$ vanishes. Now we consider that inverse of the cotangent and taking $\theta={\mbox arc cot}(x/y)$. We need two more domains, namely, $I\times (0,\pi)$ and $I\times (\pi,2\pi)$. Finally, we observe that, using the inverse functions of the tangent of the cotangent function, we need 4 parametrizations: all them write 'very similar', but the domain goes changing.
- If we do not want to use trigonometric functions, we can do the following. If one looks the picture of a surface of revolution, it is clear that the parametrization $X$ can be defined in $I\times (0,2\pi)$, because the angle $\theta$ is well defined. The problem appeared in how to catch the variable $\theta$. The trigonometric functions have added a bit of confusion. Other way is the following. Consider $\beta:(0,2\pi)\rightarrow {\mathbb S}^1-\{(0,0\})$ a parametrization of the circle minus one point. The key is the following: the map $\beta$ is a homeomorphism! It is clear that $\beta$ is one-to-one and continuous. One could do the following argument. It is well known that ${\mathbb S}^1$ minus one point is homeomorphic to the real line ${\mathbb R}$, which it is homeomorphic to the interval $(0,2\pi)$. But the problem is if $\beta$ is, indeed, a homeomorphism. The only trouble is about the inverse. But $\beta$ is an open map because the image of an interval of $(0,2\pi)$ is an open set of ${\mathbb S}^1$. Once proved that $\beta$ is a homeomorphism, from $x=f(t)\cos\theta$ and $y=f(t)\sin\theta$ we conclude $$\theta=\beta^{-1}\left(\frac{x}{\sqrt{x^2+y^2}},\frac{y}{\sqrt{x^2+y^2}}\right).$$ Then $$X^{-1}(x,y,z)=\left(\alpha^{-1}(\sqrt{x^2+y^2}),\beta^{-1}\left(\frac{x}{\sqrt{x^2+y^2}},\frac{y}{\sqrt{x^2+y^2}}\right)\right).$$ Thus we need 2 parametrizations.
If $\alpha$ is a simple closed curve, for covering the curve $\alpha$ by embeddings, we need two parametrizations, namely, $\alpha:(0,T)\rightarrow \alpha(0,T)$ and $\alpha:(T/2,3T/2)\rightarrow \alpha(T/2,3T/2)$. Then for the surface, we need 4 parametrizations.
There is another elegant argument. We observe that when one has proved that $X$ is a parametrization, then we think $Y$ as a `rotation' of $X$. Recall that if $S$ is a parametrization and $\psi$ is a diffeomorphism of ${\mathbb R}^3$, then $\psi(S)$ is a surface. But the parametrizations of $\psi(S)$ are of type $\psi\circ X$, where $X$ is a parametrization of $S$. With this idea in mind, consider now $\Phi_\theta$ the rotation about the $z$-axis of angle $\theta$. By the definition of $S$, we have $S=\Phi_\theta(S)$. Suppose that we have proved that $X:U_1:=I\times (-\pi/2,\pi/2)\rightarrow {\mathbb R}^3$ is a parametrization of $S$: it is only of a part of $S$, exactly, $V_1=X(U_1)$. Now we take $\theta\in{\mathbb R}$. Because $\Phi_\theta$ is a homeomorphism, it is clear that $\Phi_\theta\circ X$ satisfies the properties of a parametrization, where now the coordinate open is $\Phi_\theta(V_1)$. We point out that $\Phi_\theta(V_1)$ is an open set of $S$. Therefore, if we are going taking many $\theta$, we cover all the surface $S$ by coordinate opens of type $\Phi_\theta(U_1)$. In fact, it is enough only one rotation!, namely, $\Phi_\pi$. With this argument, the effort lies only in the first parametrization $X$: the other ones are obtained `by rotating' $X$.
Finally, we conclude that it is clear that the parametrizations $X$ hold to prove that $S$ is a surface of revolution, for example, taking very small domains, or rotations of $X$. However, the proof is a bit tedious if one wants to write precise arguments.
No comments:
Post a Comment