Tuesday, 7 March 2017

Curvature of a planar curve by reversing its direction

After the last exercise this afternoon, I will revise what is the curvature of a planar curve when we reverse its orientation. In order to simplify the notation, we will assume that the domain $I$ of the planar curve is $I=\mathbb{R}$, so we have $\alpha:\mathbb{R}\rightarrow{\mathbb R}^2$, which we suppose parametrized by the length-arc. In classroom we have said "when we reverse the orientation, then the curvature change the sign at the point". Firstly, we explanation of our intuition.

When we change the orientation on the curve, we are taking $-s$ instead of $s$ as the new parameter the curve, and as we increase $s$, we are going in the initial curve on the contrary direction. Then the result that we want to prove is that when we pass by a point of the curve, its curvature is the opposite if we go along the curve in the other direction. That is, we say that at $s_0$  the curvature of $\alpha$ when we reverse the sense of the parameter is the opposite with respect to the other direction.

The computations are clear and were made in the classroom. Define $\beta(s)=\alpha(-s)$ the curve $\alpha$ parameterized in the opposite direction. Then $T_\beta(s)=-T_\alpha(-s)$, $N_\beta(s)=JT_\beta(s)=-JT_\alpha(-s)=-N_\alpha(-s)$ and $T_\beta'(s)=T'_\alpha(-s)$. Thus $$\kappa_\beta(s)=\langle T'_\beta(s),N_\beta(s)\rangle=-\langle T'_\alpha(-s),N_\alpha(-s)\rangle=-\kappa_\alpha(-s). (*)$$
The problem appears when we utilize the words to describe the above result. The symbol $\kappa_\beta(s)$ is the curvature of $\alpha$ with the reverse direction at the point $s$. The right hand side says that it coincides with the opposite of the curvature of $\alpha$ at $-s$.

An example. Consider the curve $\alpha(t)=(t,t^2+t^3)$. This curve is not parameterized by the length-arc, but the above argument (which it involves only the curvature) holds for any curve. The curvature of $\alpha$ is $$\alpha'(t)=(1,2t+3t^2), \alpha''(t)=(0,2+6t)\Rightarrow\kappa_\alpha(t)=\frac{2+6t}{(1+(2t+3t^2)^2)^{3/2}}.$$ We fix the point $t=1$, that is, $\alpha(1)=(1,2)$. Then the curvature at $t=1$ is $\kappa_\alpha(1)=8/26^{3/2}$.  We reverse the orientation of $\alpha$ by doing $\beta(t)=(-t,t^2-t^3)$. Now the point $t=1$ for $\alpha$ corresponds with $t=-1$. The curvature of $\beta$ is $$\kappa_\beta(t)=\frac{-2+6t}{(1+(2t-3t^2)^2)^{3/2}}.$$ Then $\kappa_\beta(-1)=-8/26^{3/2}$, which corresponds with the formula  (*).

To finish, I propose a question. Suppose now that the curve is the graph of a function $y=f(x)$, where we know that the curvature of the curve is $f''(x)/(1+f'(x)^2)^{3/2}$. If we move in the opposite direction, then the curve is the graph of the function $y=f(-x)$. Using the above formula,  the curvature would be $f''(-x)/(1+f'(-x)^2)^{3/2}$ because the first derivative gives $-f'(-x)$, but the second one yields $f''(-x)$. But according to (*), this should give $-f''(-x)/(1+f'(-x)^2)^{3/2}$, the oppossite sign.

Question: what is it happening?

6 comments:

  1. This comment has been removed by the author.

    ReplyDelete
  2. Ya se comentó al inicio del curso que traza y curva son conceptos distintos. Así, recorrer la traza en un sentido u otro, es hablar de curvas (aplicaciones) distintas y se comentó algún ejemplo como el de la circunferencia.

    Al recorrer la circunferencia en sentido antihorario teníamos una curvatura cte pero positiva (porque la curva siempre se quedaba a la izquierda de la recta tangente, en el sentido del normal) y al recorrer la circunferencia en sentido horario teníamos una curvatura cte pero negativa (porque la curva se quedaba a la derecha de la recta tangente, en el sentido opuesto al normal).

    Esto encajaba con la interpretación de la curva ante reparametrizaciones: para el mismo punto de la traza teníamos una misma curvatura salvo signo, según fuera la reparametrización. No hay cambios en la interpretación si la curva es un grafo. ¿Qué pasa al reparametrizar?


    $$\left\lbrace \begin{array}{l}
    \alpha \colon I \longrightarrow \mathbb{R}^{2} \\
    \alpha(t) = (t, f(t)) \\
    \alpha'(t) = (1, f'(t)) \\
    J\alpha'(t) = (-f'(t), 1) \\
    \alpha''(t) = (0, f''(t)) \\
    \end{array}\right. \Longleftrightarrow \left\lbrace \begin{array}{l}
    \beta \colon -I \longrightarrow \mathbb{R}^{2} \\
    \beta(x) = \alpha(-x) = (-x, f(-x)) \\
    \beta'(x) = (-1, -f'(-x)) \\
    J\beta'(x) = (f'(-x), -1) \\
    \beta''(x) = (0, f''(-x)) \\
    \end{array} \right.$$

    Si calculamos la curvatura con la fórmula genérica para curvas regulares y teniendo en cuenta que el difeomorfismo es $x=-t$, tenemos que
    $$\kappa_{\beta}(x) = \frac{-f''(-x)}{\sqrt{1+f'(-x)^{2}}^{3}} = \frac{-f''(t)}{\sqrt{1+f'(t)^2}^{3}} = -\kappa_{\alpha}(t) = -\kappa_{\alpha}(-x)$$

    ReplyDelete
  3. Ok, the formula that you have obtained is by using the formula of a curve which is not parameterized by the length-arc, which it is correct. But the proposed question is different. We have a formula of the curvature for a curve that writes as $y=f(x)$: $$k(x)=\frac{f''(x)}{(1+f'(x)^2)^{3/2}}.$$ If I reverse the direction, then the function is $y=f(-x)$ and using the formula of the curvature again, the curvature seems to be the same, which it is not possible. What is happening?

    ReplyDelete
  4. Es que reparametrizar la curva en sentido contrario no es simplemente cambiar a $y=f(-x)$, es reconstruir la curva con el difeomorfismo dado y como se ha hecho en la respuesta.

    Ejemplifiquemos: Consideremos $y=x^{3}$ que además presenta la ventaja de ser simétrica respecto $x=0$ y estar definida en todo $\mathbb{R}$. Es un grafo y la curva será $\alpha(t) = (t, t^{3})$. La reparametrización será $\beta(x) = (-x, (-x)^{3})$ donde $x = -t$, pero $\gamma(x) = (x, (-x)^{3})$ es otra cosa.

    Se puede ver gráficamente muy claro:
    http://www.wolframalpha.com/input/?i=parametric+plots+x(t)%3D%7B-t,+-t%5E3%7D,+y(t)+%3D+%7Bt,+-t%5E3%7D


    Rerespondiendo a la pregunta: Ocurre que no se ha hallado la curvatura de nuestra curva, sino de otra. ¿Por qué? Porque no se ha reparametrizado la curva. ¿Cómo se sabe? Comprobándolo se ve que $(x, f(-x))$ es una traza simétrica respecto al eje $0Y$ de $\mathbb{R}^{2}$.


    Otro caso más: $y = \ln(x)$ donde $x > 0$. Inmediatamente uno acepta que $y=f(-x)$ no es recorrer la traza en sentido contrario.

    ReplyDelete