Showing posts with label exponential map. Show all posts
Showing posts with label exponential map. Show all posts

Saturday, 20 May 2017

The exponential map in the plane and in the sphere

A geodesic in a plane $P$ writes as $\gamma(s)=p+s v$, $p\in P$ and $v\in T_pP=P$. Then the exponential map is simply $$exp(v)=p+v$$
that is, the exponential map at $p$ is a translation on $P$ with translation vector $p$. Let us observe that the $\mbox{exp}$ is a diffeomorphism in the whole $T_pP$ and thus the normal neighborhood of $p$ is the very plane $P$.

In the unit sphere ${\mathbb S}^2$  a geodesic is $\gamma(s)=\cos(s)p+\sin(s) v/|v|$, where $p\in  {\mathbb S}^2$ and $v\in T_p{\mathbb S}^2$. Then $$exp(v)=\cos(1)p+\sin(1)v/|v|.$$ We want to study when $\mbox{exp}$ is one-to-one. By the property $\gamma(t;p,\lambda v)=\gamma(\lambda t; p,v)$, we have $\mbox{exp}(\lambda v)=\gamma(t)$. If $|v|=1$, for $\lambda=\pi$, $\gamma(\pi;p,\lambda v)=-p$. This implies that the exponential map $\mbox{exp}$ is one-to-one in the ball $B_\pi(0)$ of radius $\pi$.