Two days ago, we have shown a surface where all its points are hyperbolic. Now, we consider the elliptic paraboloid $z=x^2+y^2$. Now $$K=\frac{4}{(1+4x^2+4y^2)^2},$$proving that all its points are elliptic.
On the other hand, the parabolic paraboloid $z=x^2$ has as Gauss curvature $K=0$ so all its points are parabolic or flat. In order to distinguish, we have to compute the principal curvatures. Since $K=0$, the principal curvatures are $\kappa_1=H$ and $\kappa_2=0$ by the relation $$\kappa_i=H\pm\sqrt{H^2-K}.$$ The mean curvature is given by $$H=\frac12\frac{(1+f_y^2)f_{xx}-2f_xf_yf_{xy}+(1+f_x^2)f_{yy}}{(1+f_x^2+f_y^2)^{3/2}}=\frac{1}{(1+4x^2)^{3/2}}\not=0$$ for any $x$. This proves that all its points are parabolic.
In the next pictures we have a elliptic paraboloid (left) and a parabolic paraboloid (right).
It is really important for us to know how to use the ideal functions of the hyperbolic equation because it makes us have an easy learning in solving problems in math that involves graphical methods.
ReplyDelete